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The initial stage of interface instability upon radial displacement of a fluid in a Hele-Shaw cell is investi-
gated. An air-silicone oil system is analyzed. The critical radii of stability relative to long-wave perturbations
are determined. It is found that, in the investigated range of parameters, instability most often begins by a
translational mechanism. It is ascertained that in the overwhelming majority of cases the critical radii of
instability are smaller than the values predicted by the linear stability theory and external effects make this
difference even greater. The obtained results are discussed and compared with the existing theories.
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I. INTRODUCTION

Pattern-forming interfacial instabilities have been inten-
sively investigated for quite a long time �1–3�. There are
many reasons to that. Among them are the requirements of
modern technologies, the interesting and nontrivial theoreti-
cal models and approaches considerably enriching our
knowledge of the surrounding world, and aesthetic aspects
�e.g., amazingly beautiful fractal and dendritic crystal struc-
tures resulting from the loss of stability�, etc. No doubt, all of
the above are also related to the morphological transition,
which is the subject of the present work. The paper will
discuss a slow quasistationary radial displacement of one
fluid by another less viscous fluid in a horizontal cell con-
sisting of two closely arranged plates �the Hele-Shaw cell�.
The displacing fluid is injected into the cell in its center and,
as it moves, at some moment of time the initially round
interface of the two fluids loses its stability and gets dis-
torted, transforming to an intricate “fingered” structure.

Also, it is important to consider a system of this kind for
the following reasons. Such a transition �in any case, its ini-
tial stage� may be quite easily1 and mathematically accu-
rately modeled and analyzed. At the same time, neither the
experimental implementation, nor the investigation of this
phenomenon presents any special difficulties. The experi-
ment may be conducted under normal room conditions, with-
out involving special equipment; the phenomenon may be
easily reproduced and is observable for many fluids �5–7�.
The last circumstance allows investigations to be conducted
in a wide range of parameters. The system two-
dimensionality required by the theory is easily controllable.
The interface between two fluids can be perturbed in many
ways when stability is concerned �3,7,8� �for many other,
e.g., crystal systems, this is not so simple�. Because of these
features, the given system proves to be of value from the
point of view of not just qualitative, but also quantitative
verification of different theoretical approaches and hypoth-

eses. One of such hypotheses is an idea that the loss of mor-
phological stability of the moving interface presents a non-
equilibrium phase transition of the first order �3,9,10�.
Consequently, a metastable region, in which the morphologi-
cal transition can be observed, exists. The higher the ampli-
tude of perturbation, the earlier �at smaller sizes of the dis-
placing fluid region� will this transition take place; and vice
versa, the lower the amplitude of perturbations, the later will
the transition from a round to a distorted displacement front
take place in the displacement process, and, respectively, the
deeper will the penetration into the metastable region be.

It should be noted that, although theoretical studies dedi-
cated to analysis of the initial stage of transition from a
stable to an unstable round interface between two fluids are
numerous �9–18�, experimental studies are lacking, and,
therefore, no attempts have been made at a quantitative com-
parison with theory at this stage.2 For this reason, the pur-
pose of this paper was to correct the above fault.

The work is organized in the following way. In the next
section, modern theoretical representations of the initial
stage of the loss of morphological stability by the moving
fluid interface will be outlined briefly. Section III gives a
detailed description of the experimental setup, substantiates
the selection of fluids for investigation, describes the proce-
dure of analyzing the obtained data �images� and deriving the
critical stability radius. Section IV, the core of the paper,
presents the obtained results followed by their discussion.
The paper ends with the conclusions.

II. THEORETICAL BASIS

The first detailed analytical treatment of radial displace-
ment is found in �11�. The rate of growth of an infinitesimal
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1In the majority of cases a linear analysis of interface stability

may be sufficient; therewith, the pressure field is well described by
the two-dimensional Laplace equation, and all the system param-
eters are isotropic �4–6�.

2Experimental studies have been available dedicated mainly to
subsequent development of instability: structure fractal dimension-
ality, competition of emerging “fingers,” their rate, shapes, etc.
�5–7,11,17–23�. Although this stage of development is of great
practical interest, it is the least fortunate from the point of view of
verifying and perfecting new ideas and approaches. In fact, math-
ematical complexity of the object essentially increases here, finally
leading to multiple approximations and assumptions. In the long
run, both a qualitative and a quantitative comparison with the ex-
perimental data get complicated, bringing about great freedom in
interpreting the results.
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perturbation of a round interface was calculated in linear
approximation. The rate of injection of a less viscous fluid
through the cell center was assumed to be constant. Both
fluids were regarded as immiscible and incompressible. The
motion was assumed to be quasi-two-dimensional; i.e., all
flow conditions were averaged over the cell thickness. Such
an approximation was used in �11�, and a similar situation is
investigated further in this paper. The cell was regarded as
infinite, with a point source of fluid injection. An arbitrarily
small distortion of the initially round interface was repre-
sented as r=R+� cos�n��, where R is the radial position of
the round interface, � is the perturbation amplitude, n is the
azimuthal wave number of the mode, and � is a polar angle.
It follows from the calculation made for the n-th perturbation
growth rate that the loss of stability will take place when the
interface reaches a critical radius.

Rs,p = n�n2 − 1�
M1M2

M1 + M2

2��

Q
�n

M1 − M2

M1 + M2
− 1�−1

, �1�

where Mi=b2 /12�i, �i is the fluid viscosity, b is the distance
between the cell plates, �i=1, 2 for the displacing or the
displaced fluid, respectively�, � is the surface tension, Q is a
constant flow rate �mm2 /s�. When this size is exceeded, the
perturbation growth rate changes sign from negative �pertur-
bation damping� to positive �perturbation development�.

Although the calculations made in �11�. permitted a quali-
tative description of the phenomena observed in the experi-
ment, they had a number of drawbacks. First, the result Eq.
�1� tells nothing of what is likely to happen with the so-
called translational perturbation3 �n=1�. Second, the solution
was sought based on an assumption of a pressure jump at the
two fluids interface described by the Laplace formula 2� /b
+�K, where K is the interface curvature in the plane of mo-
tion. Obviously, this classical equilibrium condition presents
a rather rough assumption for the problem considered. Third,
the paper gives no indication of how the loss of stability
would occur if the interfaces perturbation were noninfinitesi-
mal. In particular, would the critical stability radius deter-
mined by Eq. �1� decrease, increase, or remain unchanged.

As distinct from �11�, account was taken in �13�. of finite-
ness of the sizes: the Hele-Shaw cell R� and the hole through
which the fluid was injected R0. Taking into account the
boundaries allowed predicting the existence of a critical ra-
dius of stability for the perturbation growth at the wave num-
ber n=1. According to estimates, if the viscosity of the dis-
placing fluid is much lower than the viscosity of the
displaced fluid �M2 /M1�10−3�, translational instability will
most probably be observed in the experiment.

The Laplace condition for the problem considered was
given a more accurate definition in �24�. It was assumed that
the displaced fluid completely wetted the walls, leaving a
thin film on the walls while being displaced. An analysis
yielded the following approximate formula for the pressure
jump, 2� /b+�V�+	K, where �=7.6���2 /b�� /b, 	=�� /4,
�=2 /3 and V is the fluid velocity. This condition manifestly

accounts for the influence of the fluid motion rate on the
interface shape �second term�, and a correction is introduced
to account for a change in the interface shape across the cell
thickness �third term�. The critical stability radius Rs relative
to the n-th harmonic, accounting for this condition in the
linear order of the perturbations theory, as is shown in
�14� 4, may be found by numerically solving the equation

1 + n�M2

M1
− 1�




1 + ��n2 − 1�
	

R
− ��� Q

2�R
��	2�

Q

M1M2

M2 − M1

M2

M1

1 + �R0/R�2n

1 − �R0/R�2n +
1 − �R/R��2n

1 + �R/R��2n + n��� Q

2�R
��2�M2

Q

= 0. �2�

A detailed analysis of this solution and the peculiarities
emerging in such description of displacement is given in
�14�. It should be noted only that, with the specified condi-
tions at the interface taken into account, the stability radius
becomes much smaller �by tens of percent� than the value
found earlier �11,13�. Considering perturbations at n=1, Eq.
�2� allows the critical radius to be determined in an explicit
form:

RS,1 = R0
�M2/M1��R�/R0�2 + 1

1 − M2/M1
. �3�

It is worth noting that in this case the critical radius turns
out to be independent of the rate of displacement and the
distance between the cell plates.

A linear analysis for morphological stability fails to an-
swer where the critical stability radius would shift if the per-
turbation amplitude were noninfinitesimal. At the same time,
from the point of view of practice and experimental check of
theoretical predictions �including Eqs. �1�–�3��, this question
is topical, since, in a real experiment, one can hardly expect
the perturbations to be of an exclusively infinitesimal kind. A
study of the influence of noninfinitesimal perturbations on
stability of radial displacement in the Hele-Shaw cell was
made in �15,16�. In these papers, a weakly nonlinear analysis
of the problem was carried out. A second order mode cou-
pling differential equation for the perturbation amplitudes
was derived. It was also shown that the interaction of modes
is the underlying factor of “fingers” branching.

Reference �9� proposes a hypothesis that, with an increase
in the amplitude of perturbations, the critical radius will de-
crease to a size determined by solving the following equation
relative to R:

3According to �11�, the perturbation growth rate �n=1� is always
negative at R�0.

4An allowance for such a corrected Laplace condition is also
made in �19,20�, on the assumption of a constant pressure at the cell
entrance, but not of the injected fluid stream.
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� Q

2�R
�2

+
Q

�
M2Rn−1a2n�1 + �R�/R�2n� = 0, �4�

where a2 is a sufficiently complicated function5 depending
on R and the other parameters responsible for displacement.
This conclusion is based on entropy production calculations
and the so-called maximum entropy production principle
�see �3,25,26��. The interval between the radius determined
from Eq. �4� and RS is referred to as metastable.

Thus, it follows from the above considerations that the
theory predicting the behavior of the interface between two
fluids in a Hele-Shaw cell at the initial stage of stability loss
has been developed in sufficient detail. At the same time, no
experimental measurements enabling either quantitative con-
firmation or disapproval of the above results may be found in
the literature.

III. EXPERIMENTAL PROCEDURE

A. Experimental Setup

The experimental setup schematic is shown in Fig. 1. The
central component of the experimental setup was the so-
called Hele-Shaw cell presenting two planar-parallel plates
from transparent float glass: the lower glass 600
600

10 mm in size, and the upper glass shaped as a circle 500
mm in diameter and 10 mm thick. The glass plates were
arranged horizontally, at some distance one from the other
ensured by metallic spacers of varying thickness. The cell
spacing was uniform to within �0.01 mm �on account of the
upper glass deflection by gravity�. For each test, the plates
were leveled �to within 0.057° =1 mm /m�. With this tilt, the
characteristic rate of the fluid flow by gravity only was not
over 10−4 mm2 /s, which was much less than the investi-
gated displacement rate ��102 mm2 /s�. The bottom plate of
the cell had a hole 4 mm in diameter for connecting a pipe to
inject the displacing fluid. The hole edges were smoothed
and polished to avoid strong perturbations of the injected

fluid at inlet. As a result, the actual diameter of the hole, at
which a radial displacement started, was 11 mm. The fluid
was injected using an original compressor whose working
chamber volume was varied by a piston moving at a constant
velocity. This provided an almost constant controlled flow
rate in the range of 0.05 to 2 ml/s.

At the beginning of the experiment the whole cell was
slowly filled with silicone oil. The absence of air bubbles and
other impurities was controlled visually. The experiment
consisted in silicone oil displacement with air from a bubble
11 mm in size �of 5.5 mm radius� to a bubble with a pro-
nounced loss of stability by the boundary �the process was
video recorded�. Then the air bubble was withdrawn back to
the size of 11 mm �i.e., system returned to the initial state�.
Several initial cycles of this kind were preparatory to exclude
the effect of microroughness formed after preliminary clean-
ing of the glass surfaces of the cell.

In each experiment the rate and constancy of the flow
were controlled by analyzing the video images �see next sec-
tion�. Quasi-two-dimensional structures formed by the fluid
injected in the cell were recorded with the help of a Pana-
sonic digital video camera �NV-GS500� with a 3xCCD
�charged-coupled device�; 1 /4.7� matrix �each CCD matrix
providing a 1.07 Mpix resolution�. The quality of the video
images was improved: �1� for higher contrast, with a black
mat film reducing the intensity of flares applied on the lower
plate of the Hele-Shaw cell; �2� with a white screen installed
to reflect and diffuse the light directed on it from below. The
video record was transmitted in the digital form to a personal
computer for further processing.

A system of air and silicone oil �polymethyl siloxane
fluid, PMS-5 in the Russian classification� was taken for in-
vestigating the loss of interface stability. Air is traditionally
selected as the displacing fluid for reasons of simplicity in
implementation of experiments. Silicone oil �PMS-5� was
chosen from the following considerations: �1� oil wets very
well the glass used for the plates, leaving a thin uniform film
while being displaced6; �2� silicone oil viscosity is relatively
low M2 /M1�4·10−3 �compared with, e.g., glycerin�; conse-
quently, the critical stability radii must be larger, facilitating
their study with an acceptable accuracy without magnifica-
tion; �3� the physical and chemical parameters of this oil
weakly depend on temperature and are known to sufficient
accuracy �see Table I� ��27��; �4� in compliance with the
technical standard �GOST 13032–77 in Russian�, silicone oil
of the given grade is free from mechanical impurities, water
mass fraction being not over 0.004%. It was necessary to
account for the above conditions, since the purpose was to
carry out a quantitative comparison with the theory based on
a number of assumptions �in particular, good wettability of
the cell with the displaced fluid�.

B. Analysis of Images

We analyzed all images extracted from the video data �the
spatial resolution of the images was 9216 pixel / in2; the rate

5Its explicit form may be found in �9�.

6Water, for example, wets glass quite poorly and leaves no film
upon displacement, while castor oil leaves a film of uneven
thickness.

FIG. 1. Experimental setup �Hele-Shaw cell�. 1—light-diffusing
screen; 2—digital video camera; 3—personal computer; 4—glass
plates; 5—spacers; 6—displaced fluid; 7—pipe for displacing fluid
injection; 8—low-rate compressor; 9—light source, 10—adjustment
bolts fixed on a stable base to exclude influence of vibrations etc.
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of image acquisition was 25 frames/s�. Figure 2 depicts sev-
eral images observed in one of the experiments.

For processing of the experimental results �images from
video files�, a program module was created in the MATLAB

software with the use of the image processing toolbox. The
module task was to determine the initial moment of the in-
terface transition from a round to the so-called “fingered”
geometry.

The program module sequentially performed the follow-
ing functions:

�1� Discriminating the two-phase interface. This was done
using the Canny Method by searching for local areas with
jumps in brightness �Fig. 3�.

�2� Filling the object internal area with black pixels and
calculating the digitized figure area by counting the number
of black pixels in the image �Fig. 4�. Conversion to system
units was done using round templates preliminarily recorded
at the beginning of the experiment.

�3� Plotting the interface from the polar angle �the hole for
fluid injection is taken as the center�. Further, the moving-
average method was used to remove the noise connected
with digitization discreteness �Fig. 5�a��. In every experi-

ment, to correct the distortions caused by tilting of the video
camera, we video recorded an array of round templates of
different known sizes drawn beforehand in the graphic pack-
age and printed out. Further, by comparing the obtained tem-
plate image and the known template parameters �the depen-
dence of the radius on the angle was analyzed�, a correction
coefficient was found to account for the appearing distortion.
Using this coefficient, the interface images obtained in the
experiment were corrected �Fig. 5�b��. The correction coef-
ficient was introduced taking into account the size of the air
bubble.

�4� Fourier series expansion of the obtained function of
the polar angle �Fig. 6�. The variation of the Fourier coeffi-
cients with time allows the interface evolution to be traced
and, particularly, the critical stability radius to be defined. In
defining this radius, it is necessary to take into account an
error arising from the fact that, in digital recording of an
image, the position of the center of displacement and the
two-phase interface may be defined to a one-pixel accuracy
only. To account for this error, the following operations were
performed in processing of each image: �1� regarding the
center coordinates as a random variable distributed normally
within a circle with a center specified by the user and a
radius equal to an image discretization unit value �pixel�; �2�

TABLE I. Selected properties of silicone oil �PMS-5� �27�.

PMS-5
�CH3�3SiO-�-Si�CH3�2O-�k-Si�CH3�3, k is a medium degree of

molecules
polymerization

Molecular mass 690

Density, kg /m3, at 300 K 910

Dynamic viscosity, 10−3 Pa·s, at 300 K 4.368

Surface tension, 10−3 N /m 18.1

Temperature viscosity coefficient, ratio of
viscosity at 360 K to viscosity at 300 K 0.41

FIG. 2. Four frames of the air bubble growth before processing.
1—hole for injection of the displacing fluid, 2—polished area �ac-
tual size of the radial displacement onset�, 3—displacing fluid �air�,
4—displaced fluid �silicone oil�. Q=230.4 mm2 /s, b=0.6 mm.

FIG. 3. Four frames presented in Fig. 2 after preliminary pro-
cessing �binarization, noise reduction and edge extraction�.

FIG. 4. Spot area S as a function of time t during the air bubble
growth, for frames presented in Fig. 2

MARTYUSHEV et al. PHYSICAL REVIEW E 80, 066306 �2009�

066306-4



representation of the interface as a region up to three pixels
thick, and random selection of the interface coordinate
within this region �in this case, a number of conditions
should be fulfilled for the “generated interface,” namely, the
absence of self-intersections, one-pixel thickness, etc.�. As a
result, a great number of boundaries with such randomization
were obtained for each image �10 in this study�, and a great
number of Fourier coefficients could be calculated. Their av-
eraged value with an error was used as the final value �see
Fig. 6�. Naturally, such forced measures led to largely inac-
curate final results, allowing only long-term tendencies in
coefficients variation to be determined. Clearly, this ap-

proach led to some overestimation of the confidence interval
�particularly, translational distortions of the interface�, result-
ing, among other things, in that the time of the reliable varia-
tion of the Fourier coefficients was overrated a little. For this
reason, the true stability loss radius for one or the other har-
monic must not exceed the determined value.

The created software module was tested using templates
placed on the Hele-Shaw cell lower glass and video re-
corded. The video camera settings corresponded to the sub-
sequent experiments. The templates were circles of different
radii, with added known sinusoidal perturbations �Fig. 7�.
The results obtained for circles with the radius R not over 50
mm7 and perturbation amplitudes � from 1 to 10% of the
radius are as follows.

�1� Mode n=1. These are most difficult to determine in
terms of quantity. The maximum error for small radii and
small amplitudes may be up to 700%. As the radius and the
perturbation amplitude increase, the error incurred in the am-
plitude becomes significantly smaller �down to 10%�. At the
same time, the method displays a change in the translational
harmonic amplitude both in the case of varying � /R and in a
more complicated case of � /R=const. A numerical imple-
mentation of the Fourier transform also “reveals” higher
wave number harmonics, which are absent in the template.
However, the amplitude of these harmonics is more than one
order of magnitude lower than that of the harmonic with n
=1, while their value varies ambidirectionally and more than
one order of magnitude slower as compared with variation in
the first harmonic amplitude.

�2� Mode n=2. These harmonics are somewhat easier to
determine quantitatively than those above. For small radii
and low perturbation amplitudes, the error is also maximum
�up to 50%�, but it reduces to 3% with increasing radius and
amplitude. At the same time, the method reliably registers
variation of the second harmonic amplitude. Numerical cal-
culation reveals false harmonics. While the harmonics with a
wave number n3 have an amplitude several times smaller

7As the experiment shows �see Sec. IV�, it is up to this size that
the loss of stability takes place in the investigated system.

FIG. 5. Distances from the center r as a function of the polar angle �: �a� before accounting for distortions caused by tilting of the
camera, �b� after such accounting. Plotted for frames presented in Fig. 2.

FIG. 6. Dependence of the first three Fourier coefficients An on
a zero coefficient of Fourier series �A0� corresponding to the radius
R of the moving phase boundary. Plotted for frames presented in
Fig. 2. The broader the confidence interval, the greater are the val-
ues of the initial radius �the bubble growth time� from which the
Fourier coefficients variation may be established reliably. For ex-
ample, if there were no confidence interval, then, apparently, for the
case presented in Fig. 6, at n=1, the value of 13.3 mm, and not 20.3
mm, would be critical. The insets show an example of Fourier spec-
tra at R=16.8 mm.
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than those with n=2, the amplitude of the harmonic with n
=1 may be much larger �especially at small radii and low
perturbation amplitudes�. However, variation of these false
harmonic amplitudes is ambidirectional, and it is at least one
order of magnitude smaller than the variation of the ampli-
tude of the harmonic with n=2.8

�3� Mode n=3 and over. The results were found to be
much similar to those in the second case.

Thus, testing demonstrated that for bubbles �of the radius
R not over 50 mm� the variation �growth or decay� of distor-
tions �to an amplitude beginning from 1% of the radius� can
be reliably registered. No quantitative conclusions on the
value of interface distortions can be made from the image
analysis module used in the work. Therefore, in this paper,
the Fourier coefficients are plotted in Fig. 6 and further not
in absolute, but in arbitrary units.

C. Determination of the Critical Radius

The experimental results were processed as follows:
�1� The frames captured from video files were processed

following the algorithm described in Sec. III B.
�2� Usually, some time was required for the displacement

rate to become constant after the setup was energized. There-
fore, for control of the constant flow rate �air injection to the
cell�, the time dependence of the air bubble area �see Fig. 8�
was checked for linearity. The points �generally, at the very
beginning and, sometimes, at the end of the experiment� de-
viating from linearity were rejected until the coefficient of
correlation between the experimental points and the straight
line was higher than 0.999. The frames corresponding to re-
jected points were excluded from processing. If the above

criterion could not be satisfied �or the number of the remain-
ing points was too small�, the experiment was viewed as flow
unsteady and ignored.

�3� In stationary experiments, dependences of the first
three harmonics amplitudes on the growing air bubble radius
�in essence, this is a zero coefficient of the Fourier series�
were plotted. These dependences �see, e.g., Fig. 9� served to
determine the radius, at which the harmonic at hand began
growing �to be precise, this critical radius was assessed from
top�. The method is clear from Fig. 9. This radius corre-
sponds to the minimum abscissa of a point on the curve,
whose confidence interval does not overlap with the confi-
dence interval of the points at the beginning of the curve.

�4� Some experiments at the same parameters were con-
ducted. In each experiment, stability loss radii were found
for each of the three harmonics. Then the radii found in each
experimental series were averaged, and their confidence in-
terval was determined. It was already noted that the value
found by this method represented a limiting and, evidently, a
slightly overstated estimate.

8An exception is low perturbation amplitudes �1%�, when � /R
remains constant as the second harmonic increases. In this case, the
harmonic with n=1 grows just two times slower than the first har-
monic �n=2�.

FIG. 7. Examples of circles with superimposed sinusoidal per-
turbations n=1, n=2, and n=3. In the top line, the sinusoidal am-
plitude accounts for ten percent of the circle radius �� /R=const�; in
the bottom line, the smaller circle is drawn with the sinusoidal
amplitude of 0.1R, and the larger one, with the perturbation ampli-
tude of 0.2R.

FIG. 8. Variation of the air bubble area S with time t. The inset
shows the initial nonstationary part, which will be disregarded in
further analysis.

FIG. 9. Variation of the amplitude of the first three harmonics of
the Fourier expansion An vs radius. Large symbols correspond to
frames presented in Fig. 2. Other comments can be found in the
text.
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IV. RESULTS AND DISCUSSION

The values of the critical stability radii Rex are given in
Table II. The same table lists values of the critical stability
radius calculated from Eqs. �1� and �2�.

An analysis of the available data suggests the following
conclusions.

�1� Translational instability �n=1� is observed upon dis-
placement in experiment. This fact is inconsistent with the
theoretical predictions given �11�, stating that this type of
instability should not be observed. The reason is that the
finite size of the Hele-Shaw cell was neglected in the calcu-
lations. Indeed, the data for n=1 vary little from the theoret-
ical prediction in Ref. �14�, where this contribution was
taken into account.

�2� The critical stability radii found experimentally at n
=2 and n=3 are much smaller than the values predicted in
both �11,14�. As regards the critical radius at n=1, no such
unambiguous conclusion can be made. However, if we recall
that the experimental values were overestimated, it can be
concluded that in the case of translational instability the ex-
periment also gives values not larger than those predicted by
the theory �14�.

�3� We cannot but note that the stability radii found for
different harmonics n are quite close one to the other �espe-
cially at b=0.8 mm�. A probable explanation of this fact is
that the surface harmonics do not develop independently. No
prediction with regard to the above observation was offered
in �11–14� dealing with the linear perturbation theory. How-
ever, according to the weakly nonlinear theory, such a depen-
dence can be observed if perturbations are not infinitesimal
�15,16,28�. Experimental results allow us to presume the ex-
istence of a mutual dependence in the development of the
first harmonics. Probably, the wider the cell gap, the stronger
is the harmonics mutual interaction, and, hence, the loss of

stability by one of the harmonics �the first one in our case�
leads to avalanche-like loss by the rest.

Thus, according to the results described above, the actual
radii of interface stability are smaller than the values pre-
dicted by the linear theory. It has been noted in the foregoing
�Sec. II� that a linear analysis permits establishing stability
only with respect to infinitesimal perturbations, and it cannot
provide information whether the transition would be sub or
supercritical if the perturbation were noninfinitesimal. Since
in real conditions perturbations of different amplitudes will
always be present, it can be concluded that a subcritical tran-
sition will take place in the displacement process at hand. To
what extent can the values, at which the transition from a
round to a fingered interface occurs, be smaller than the val-
ues predicted by the linear theory? In other words, what the
width of the metastable region is? We attempted to tackle
this problem in relation to translational instability caused by
the shift distortion. The procedure was as follows. When the
cell was filled with the displaced fluid, the upper glass was
shifted 10 mm relative to the center. Then the compressor
was started, and displacement began. As soon as the begin-
ning of growth of the air bubble was detected visually, the
upper glass was reset to its original position. The time of the
shift was 0.3 to 0.4 s. As a result, the air bubble shifted
relative to the center and stretched a little �see Fig. 10�. Ac-
cording to measurements, subsequent to an abrupt increase
caused by the shift, the perturbation corresponding to n=1
continued growing. Correspondingly, the experimental val-
ues of the critical stability radius upon the shift approxi-
mately corresponded to the air bubble radii at the moment
the external effect was removed. Oppositely, subsequent to
the shift that caused an abrupt increase in the second and
third harmonic amplitudes, these amplitudes decreased at a
fairly fast rate �see Fig. 11�. The experimental data are given
in Table III.

TABLE II. Summary of measurement results

Number of
experiments

Q
�mm2 /s�

b
�mm� n

Rex

�mm�

Rs,p

�mm�
�Eq. �1��

Rs

�mm�
�Eqs. �2� and �3��

7 123.0�0.4 0.60�0.03 1 18.2�1.2 17.2

2 16.8�1.0 38.6 30.3

3 38.5�1.6 76.9 60.4

4 226.6�1.2 0.60�0.03 1 20.4�0.9 17.2

2 15.2�0.9 21.0 16.5

3 34.9�1.3 41.7 32.8

10 230.6�0.3 0.60�0.03 1 17.6�1.3 17.2

2 13.2�0.7 20.6 16.2

3 23.8�1.0 41.0 32.2

7 83.9�0.6 0.80�0.03 1 9.8�0.7 17.2

2 8.8�1.3 100.6 77.5

3 11.3�0.7 200.3 150.4

7 162.2�1.0 0.80�0.03 1 11.3�0.7 17.2

2 9.6�0.7 52.0 40.8

3 13.0�0.9 103.6 81.3
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A comparison of the respective Rex values listed in Tables
II and III suggests a conclusion that the first harmonic devel-
opment under the shift takes place at earlier stages. This is
most evident in the experiments at b=0.6 mm. A probable
explanation is that in any experiments, including those
shown in Table II, the presence of noninfinitesimal perturba-
tions cannot be excluded. When b=0.8 mm, these perturba-
tions result in that loss of stability by the first harmonic takes
place at sizes of 9.8–11.3 mm �Table II�. These values are
quite close to those minimum possible �5.5 mm�. For this
reason, introduction of auxiliary �shift� perturbations de-
creases little the value of loss of stability. At b=0.6 mm, the
critical values are considerably larger �17.6 mm� than those
minimum possible, and, correspondingly, the shift results in
a more significant change of the critical radius.

Thus, perturbation shifts the critical radius at n=1 to
smaller values, decreasing it approximately two times as
compared with the radius predicted by the linear perturbation
theory �14�. According to the measurements, this value is the
smaller, the shorter the shift time �see Table III�. This is due
to the fact that the loss of stability is detected immediately
after the perturbing effect has been removed; and the shorter
the shift time, the smaller is the air bubble growth. To all
appearance, if the shift velocity is increased, a situation is
possible when the critical radius upon the shift �n=1� ap-
proaches the radius of the hole for injection of air. In our
case, its radius is 5.5 mm. It is interesting to note that, ac-
cording to the predictions in �9� �see also Eq. �4��, the meta-
stable region for the first perturbation mode is always found

in the interval from 5.5 to 17.2 mm under the experimental
conditions in Table III. This fact is an argument in favor of
the theory assuming the presence of metastable regions upon
displacement in the Hele-Shaw cell; it also supports the
method proposed for calculation of these regions �9�. For a
more reliable substantiation of this conclusion, the meta-
stable region boundaries should be compared with those pre-
dicted theoretically for perturbations at n�1.

V. CONCLUSION

An experimental setup was used for quantitative investi-
gation on the initial stage of loss of stability upon a radial
displacement of the fluid in a Hele-Shaw cell. Two basic
results can be highlighted:

�1� In the silicone oil-air system studied, the presence of a
translational mechanism responsible for the loss of morpho-
logical stability was detected at the displacing fluid flow rate
from 80 to 230 mm2 /s and the cell thickness of 0.6�0.8
mm. This fact and a quantitative comparison of the experi-
mentally obtained and theoretically predicted values suggest
that the theory accounting for finite sizes of the Hele-Shaw
cell �14� is most suitable for description of real experiments.

�2� It was found that in the majority of cases critical sta-
bility radii prove to be smaller than the values predicted by
the linear stability theory. In other words, the morphological
transition from a round to a distorted interface takes place

FIG. 11. Variation of the amplitude of the first three harmonics
of the Fourier expansion An vs. the radius under the action of the
shift. Large symbols correspond to the frames presented in Fig. 10.

FIG. 10. Six frames of the air bubble growth under the action of
the shift. The second frame �0.4 s� corresponds to the moment of
the shift. Q=159.7 mm2 /s, b=0.8 mm.

TABLE III. The critical radii of stability relative to translational perturbations �n=1� caused by the shift
distortion

Number
of tests

Q
�mm2 /s�

b
�mm�

Time of
shift
�s�

Rex

�mm�

Rs,1

�mm�
�Eq. �3��

9 159�1 0.80�0.03 0.32�0.03 9.8�0.7

6 83�1 0.80�0.03 0.28�0.05 9.0�1.0 17.2

8 236�2 0.60�0.03 0.43�0.04 11.8�0.7
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earlier than it follows from the theory assuming an infinitesi-
mal amplitude of the interface perturbation. Since in any,
even most accurate, experiment uncontrolled effects �pertur-
bations�, including noninfinitesimal ones, cannot be ex-
cluded, we come to a conclusion that the value of perturba-
tion influences the position of the transition point, reducing
the critical radius. Introduction of external translational per-
turbations, as was done in this work, confirms this conclu-
sion: the loss of stability in response to the introduced per-
turbation is observed practically at once; i.e., the critical
radius approaches the minimum possible value. The meta-

stable interface behavior upon displacement in a radial Hele-
Shaw cell, which was established in this work, is very im-
portant for development of the theory of subcritical
nonequilibrium transitions.
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